Skip to main content

Eye-Tracking Innovation Merges the Powers of Deflectometry, AI




Eye-tracking technology is critical in virtual and augmented reality headsets, scientific research, medical and behavioral sciences, automotive driving assistance, and industrial engineering. Tracking the movements of the human eye with high accuracy, however, is a daunting challenge.

Researchers at the University of Arizona Wyant College of Optical Sciences have demonstrated an approach that integrates deflectometry with advanced computation. The method, the researchers said, has the potential to significantly improve state-of-the-art eye-tracking technology.

“Current eye-tracking methods can only capture directional information of the eyeball from a few sparse surface points, about a dozen at most,” said Florian Willomitzer, associate professor of optical sciences and principal investigator of the study. “With our deflectometry-based method, we can use the information from more than 40,000 surface points, theoretically even millions, all extracted from only one single, instantaneous camera image.”

“More data points provide more information that can be potentially used to significantly increase the accuracy of the gaze direction estimation,” said Jiazhang Wang, postdoctoral researcher in Willomitzer's lab and the study's first author. “This is critical, for instance, to enable next-generation applications in virtual reality. We have shown that our method can easily increase the number of acquired data points by a factor of more than 3000, compared to conventional approaches.”

Deflectometry is a 3D imaging technique that allows for the measurement of reflective surfaces with very high accuracy. Common applications of deflectometry include scanning large telescope mirrors or other high-performance optics for the slightest imperfections or deviations from their prescribed shape.

The team conducted experiments with human participants and a realistic, artificial eye model. The team measured the study subjects’ viewing direction and was able to track their gaze direction with accuracies between 0.46 and 0.97 degrees. When tested on the artificial eye model, the error was around just 0.1 degrees.

Instead of depending on a few infrared point light sources to acquire information from eye surface reflections, the new method uses a screen displaying known structured light patterns as the illumination source. Each of the more than 1 million pixels on the screen can thereby act as an individual point light source.

Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee


#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Laser Method Enables Fast & Precise Blood Vessels in Hydrogel

Researchers from Vienna University of Technology (TU Wien) and Keio University have found a way to create artificial blood vessels in miniature organ models in a quick and reproducible manner. The method utilizes ultrashort laser pulses in the femtosecond range to write highly 3D structures into a hydrogel. In biomedical research, organs-on-a-chip are becoming increasingly important: By cultivating tissue structures in precisely controlled microfluidic chips, it is possible to conduct research much more accurately than in experiments involving living humans or animals. However, there has been a major obstacle: such mini-organs are incomplete without blood vessels. To facilitate systematic studies and ensure meaningful comparisons with living organisms, a network of perfusable blood vessels and capillaries must be created — in a way that is precisely controllable and reproducible. “We can create channels spaced only a hundred micrometers apart. That’s essential when you would like to...