Skip to main content

Light Source Aims to Build on Nobel Prize-winning Technology





A team at Heriot-Watt University, led by professor Christian Brahms, is developing a light source for extremely fast laser pulses that will enable scientists to observe some of the fastest processes in the natural world as they occur. The new laser light source will capture natural processes like light absorption in photosynthesis in attoseconds.

The project, which is called FASTER — short for Flexible Attosecond Soliton Transients for Extreme Resolution — will build on the EUV attosecond technology that received the Nobel Prize in Physics in 2023.

Brahms and his team will design and build a laser light source that mimics natural sunlight, but in extremely short flashes. “My aim is to create laser pulses with similar extremely short duration to conventional attosecond science sources, but at the same ultraviolet and visible wavelengths as we get from the sun,” he said.

FASTER will bring attosecond time resolution to ultrafast spectroscopy experiments in the UV, visible, and IR regions of the electromagnetic spectrum. This will enable scientists to study ultrafast dynamics entirely with non-ionizing radiation and without the need for strong-field excitation or probing.

Ultrabroadband optical attosecond spectroscopy will be enabled by soliton self-compression. The researchers will create the optical attosecond pulses required for the new laser light source by building on the results of the recent High-energy soliton (HISOL) project.

HISOL combines the high damage threshold and far UV (FUV) transparency of gas media, the long interaction lengths enabled by waveguides, the guidance of high-energy laser pulses in large-core hollow capillary fibers, and the nonlinear evolution of ultrafast laser pulses in the higher-order-soliton regime. This combination allows IR laser pulses to be converted to wavelength-tunable FUV pulses with a few-femtosecond duration and near-perfect beam properties.

Using tailored soliton dynamics in hollow-core waveguides, the FASTER team will convert femtosecond pulses to attosecond pulses. The resulting attosecond pulses will be used on various samples to perform ultrabroadband optical attosecond pump probe and 2D spectroscopy experiments, starting with condensed-matter targets.

While current attosecond technology, including the 2023 Nobel Prize-winning breakthrough, can create extremely short pulses of light at UV or X-ray wavelengths, it is limited when it comes to natural phenomena, because natural processes involve sunlight, not the wavelengths used in laboratory experiments.

FASTER will allow scientists to take “freeze-frame” images of exceptionally fast microscopic processes in molecules and materials. “This will fill in attosecond technology’s blind spots and directly relate our knowledge of ultrafast processes to other areas, like photochemistry or materials science,” Brahms said.

“Many of the most important breakthroughs in the history of science have been enabled by observing nature at scales far beyond the limits of human perception,” he said. “That’s exactly what we’ll be working on — pushing far beyond the limits of conventional laser sources to bring fundamental science into focus.”

The FASTER project to achieve a very fast laser light source for natural phenomena will take place over a five-year period and is scheduled to officially begin in the summer of 2025. It is one of 50 research projects in the UK to receive the European Research Council’s (ERC’s) Starting Grant in 2024. Brahms and his team will receive £2.5 million ($3.3 million) in ERC funding.

ERC funding supports research in a range of fields. “The new ERC Starting Grants winners aim to deepen our understanding of the world,” Iliana Ivanova, European Commissioner for Innovation, Research, Culture, Education, and Youth, said. “Their creativity is vital to finding solutions to some of the most pressing societal challenges.”

“Empowering researchers early on in their careers is at the heart of the mission of the ERC,” Maria Leptin, ERC president, said.

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Glow Up: Synthesizing Cr³⁺-Doped Phosphors!

 Glow Up: Synthesizing Cr³⁺-Doped Phosphors! Introduction : Phosphor technology is lighting the way to incredible applications in areas like biological imaging, food safety detection, and even next-generation energy solutions. One promising development involves Cr³⁺-doped Na-β"-Al₂O₃ phosphors, synthesized using a high-temperature solid-state method. In this post, we'll break down the fascinating science behind these unique materials and their exceptional thermal and luminescent properties. Understanding Cr³⁺-Doped Na-β"-Al₂O₃ Phosphors Synthesis of Na-β"-Al₂O₃ phosphors is a process that infuses Cr³⁺ ions within the material's lattice structure. Here, chromium ions enter the lattice in a trivalent state, taking up space within the Al³⁺ sites of the crystal. This occupancy isn't random; it’s carefully controlled to ensure that Cr³⁺ ions occupy specific positions within the matrix. This precise arrangement is crucial for regulating the material's luminesce...