Skip to main content

Light-Based Approach Reduces Damage to Healthy Tissues in Cancer Treatment





A technique developed at Northeastern University targets two of the deadliest cancer types, melanoma and triple negative breast cancer, with chemotherapy drugs but without the usual associated harms. Both cancers are typically resistant to chemotherapy, said Fleury Augustin Nsole Biteghe, a lecturer in biotechnology, chemistry and chemical biology. But by attaching a light-sensitive drug to a protein called MTf — which appears abundantly in both cancers — and bathing the drug-infused protein in near-infrared light, cancer cells die.

Using antibodies to target cancer proteins is typically performed by using multiple drugs at once, Nsole Biteghe said. But this approach stimulates the immune system so much that it can end up attacking healthy body tissues.

“By using just one drug, we enhanced the efficacy,” Nsole Biteghe said. “It enables doctors to directly correlate the drug that is going into the cells with the therapeutic outcome.”

His innovation is to use local light, or photoimmunotherapy, to induce a chemotherapy drug to kill cancer cells with minimal toxicity to healthy tissues. His research focused on using a “SNAP-tag” protein to connect an antibody to a light-sensitive drug, which creates a stable, single-drug delivery system to target cancer cells.

Triple negative breast cancer gets its name from its lack of three receptors: estrogen, progesterone and human epidermal growth factor2, making treatments that target those receptors ineffective.

“Due to the lack of well-defined molecular targets, treatment relies heavily on surgery, radiotherapy, and chemotherapy,” Nsole Biteght said, “despite growing evidence of adverse effects and disease relapses.”

Chemotherapy infusions can create a whole cascade of problems, including hair loss, nausea and fatigue. Unlike infusions, light therapy is highly targeted, Nsole Biteghe said. The near-infrared light activates the drug attached to an antibody that precisely bonds with MTf, making it possible to target cancer cells with chemotherapy drugs.

Shining light on it, he said, creates a “bomb” at the cellular level. The antibody reacts by producing cytotoxic reactive oxygen species, he said, which accumulate and cause tumor cell death.

Bio Photonics Research Award


Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Laser Method Enables Fast & Precise Blood Vessels in Hydrogel

Researchers from Vienna University of Technology (TU Wien) and Keio University have found a way to create artificial blood vessels in miniature organ models in a quick and reproducible manner. The method utilizes ultrashort laser pulses in the femtosecond range to write highly 3D structures into a hydrogel. In biomedical research, organs-on-a-chip are becoming increasingly important: By cultivating tissue structures in precisely controlled microfluidic chips, it is possible to conduct research much more accurately than in experiments involving living humans or animals. However, there has been a major obstacle: such mini-organs are incomplete without blood vessels. To facilitate systematic studies and ensure meaningful comparisons with living organisms, a network of perfusable blood vessels and capillaries must be created — in a way that is precisely controllable and reproducible. “We can create channels spaced only a hundred micrometers apart. That’s essential when you would like to...