Collaborators from Carnegie Mellon University, the University of Pittsburgh, and Brown University have described a microscopy technique and set of protocols that overcome a bottleneck to the expansion microscopy method. The collaborators developed “Magnify” as a variant of expansion microscopy that uses a hydrogel that retains a spectrum of biomolecules, offers a broader application to a variety of tissues, and increases the expansion up to 11× times linearly or approximately 1300 folds of the original volume. Through the expansion microscopy process, samples are embedded in a swellable hydrogel that homogenously expands to increase the distance between molecules, which allows them to be observed in greater resolution. This allows nanoscale biological structures that previously could be viewed only via expensive high-resolution imaging techniques to be seen with standard microscopy tools. In addition, the researchers said in their paper, “Current expansion microscopy protocols requi...
Imaging through a light-scattering medium, such as clouds in the sky or tissues in the body, poses special challenges. The scattered light must be reconstructed, typically by using complex optical elements in an environment that is vulnerable to motion and mechanical instability. Computational algorithms are then able to post-process the detected light to generate an image. A new approach to imaging reconstruction, developed by researchers at King Abdullah University of Science and Technology (KAUST) and the Xiong’an Institute of Innovation, uses speckles to enable clear images of obscured objects, whether static or moving, to be produced in real time. Previous strategies for reconstructing scattered light have required some knowledge of the object and the ability to control the wavefront of light illuminating it. These strategies have not used directly obtained random speckle patterns for imaging, due to degradation and scattering. Rather, speckles have been seen as noise or chaotic ...