Skip to main content

Microlaser Bandage Measures Glucose Without Drawing Blood






A research team at Nanyang Technological University, Singapore (NTU Singapore) has developed a wearable sensor based on microlasers to measure biomarkers found in sweat. The bandage-like device could provide a way to monitor blood sugar levels noninvasively.

Human sweat contains biomarkers such as glucose, lactate, and urea that indicate various health conditions and can be collected in a noninvasive and painless manner, making it ideal for daily monitoring, the researchers said.

Diabetic patients typically use an invasive finger prick test to self-monitor blood glucose levels. A small drop is drawn from the finger and put into contact with a strip which is inserted into a portable glucose meter for reading. Alternatively, there are sensor-based monitoring devices, which can be expensive and rigid and must be attached to a patient’s skin over prolonged periods of time.

By encapsulating a microlaser in liquid crystal droplets and embedding the liquid within a soft hydrogel film, the NTU team created a compact and flexible light-based sensing device — like a bandage that can provide highly accurate biomarker readings within minutes.

“Our innovation represents a non-invasive, quick and effective way for diabetic patients to monitor their health,” said Chen Yu-Cheng, director of NTU’s Centre for Biodevices and Bioinformatics. “By combining a microlaser with a soft hydrogel film, we have demonstrated the feasibility of a wearable laser to provide a more pleasant health monitoring experience for patients.”

The NTU team created their bandage device by embedding microlasers in liquid crystal droplets. The microlasers are customized to pick up three different types of biomarkers (lactate, glucose, and urea). A different colored liquid crystal dot on the device distinguishes each biomarker.

When sweat interacts with the bandage device, the amount of light emitted by the microlasers fluctuates based on the concentration of biomarkers present. To read the biomarker levels, users shine a light source on the device, and the light emitted from the microlaser sensors is analyzed and translated using a mobile application.

In real-live experiments, the bandage device successfully picked up tiny fluctuations of glucose, lactate and urea levels in sweat down to 0.001 mm, which is 100x better than current similar technology, according to the researchers.

The NTU team believes their innovation to be the first reported wearable sensing device capable of measuring multiple biomarkers in sweat with ultra-high sensitivity and dynamic range. The sensitivity enables tracking of a dynamic range (low to high) in biomarkers levels, which provide comprehensive information on patients’ health.

“Our device is capable of detecting both the high and low range of biomarkers levels. This is particularly beneficial for diabetic patients as current similar health monitoring devices focus on tracking only high glucose levels, but not abnormal or low glucose levels, which may indicate other health complications,” said Nie Ningyuan, first author of the study and a PhD candidate at NTU. “In comparison, our device will provide a clearer picture of the users’ health condition with a variety of readings captured.”

To further develop the technology, the research team plans to fine-tune the microlaser sensors to detect a wider variety of substances, including drugs and other chemicals found in sweat.


Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Laser Method Enables Fast & Precise Blood Vessels in Hydrogel

Researchers from Vienna University of Technology (TU Wien) and Keio University have found a way to create artificial blood vessels in miniature organ models in a quick and reproducible manner. The method utilizes ultrashort laser pulses in the femtosecond range to write highly 3D structures into a hydrogel. In biomedical research, organs-on-a-chip are becoming increasingly important: By cultivating tissue structures in precisely controlled microfluidic chips, it is possible to conduct research much more accurately than in experiments involving living humans or animals. However, there has been a major obstacle: such mini-organs are incomplete without blood vessels. To facilitate systematic studies and ensure meaningful comparisons with living organisms, a network of perfusable blood vessels and capillaries must be created — in a way that is precisely controllable and reproducible. “We can create channels spaced only a hundred micrometers apart. That’s essential when you would like to...