Skip to main content

Noninvasive Terahertz Near-Field Imaging Targets Inner Ear Disorders




 

Hearing impairment is generally caused by disorders within the cochlea of the inner ear. Effective treatment of hearing loss requires a clear view of the cochlea’s internal structures, which are difficult to assess noninvasively.

To perform nondestructive detection of the cochlea’s internal structure with sufficient spatial resolution, researchers at Waseda University, working with colleagues at Kobe University and Osaka University, developed a terahertz imaging technique to visualize the cochlea through near-field imaging and 3D reconstruction.

The imaging technique provided clear structural information at varying depths, enabling the researchers to visualize intricate cochlear features. The 3D reconstruction process yielded high-quality spatial representations of the cochlea, enhancing the researchers’ understanding of the cochlea’s internal architecture.

The terahertz imaging technique could be integrated into miniaturized devices, enabling noninvasive, in vivo imaging for cochlear diagnostics, dermatology, and early cancer detection.

One of the challenges facing the researchers was the diffraction limit of terahertz waves. The cochlea is a small organ, on the order of millimeters, and the observation of its internal structure requires a spatial resolution on the order of micrometers. In conventional terahertz instruments, the spatial resolution of terahertz imaging is limited to the millimeter level.

To achieve high-resolution terahertz imaging, the researchers generated a micrometer-sized terahertz point source with a femtosecond laser at a wavelength of 1.5 μm. They used the femtosecond laser to irradiate a gallium arsenide (GaAs) substrate and placed a mouse cochlear sample directly on the substrate to enable near-field imaging.

Using a terahertz near-field point source microscope with micrometer-level spatial resolution, they performed nondestructive terahertz imaging of the mouse cochlea, visualizing its internal structure.

“By leveraging terahertz waves, we can achieve deeper tissue penetration while preserving structural clarity,” professor Kazunori Serita, who led the research, said.

The researchers applied the time-of-flight principle to convert the time scale of each terahertz image into a depth scale. They used k-means clustering, an unsupervised machine learning algorithm, to extract 3D structural information from scanned 2D time-domain images. With this information, they reconstructed the 3D internal structure of the mouse cochlea, creating a 3D point cloud and surface mesh model.

The researchers implemented 3D terahertz time-of-flight imaging and 3D image reconstruction with high reliability and accuracy.

The results demonstrate the potential of 2D and 3D terahertz imaging for high-resolution, nondestructive analysis of inner-ear structures, and highlight the value of advanced terahertz imaging for biological studies. The new “The integration of terahertz technology with existing medical devices, such as endoscopes, holds great potential for revolutionizing the way diseases are diagnosed, particularly in oncology and pathology,” Serita said.

With its noninvasive, high-resolution capabilities, terahertz technology could offer a useful approach for medical imaging and analysis.

Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,




Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Accurate Magnetic Field Measurement Method Could Advance Quantum Sensing

  Optically pumped magnetometers (OPMs) are used to measure magnetic fields in biosensing, contraband testing, and magnetic communications. They also aid in dark matter searches and serve as promising platforms for quantum -enhanced measurements. Accurate vector magnetometry, however, remains a challenge for OPMs due to the OPM’s inherent scalar operation. Scalar OPMs require an external reference to extract directional information. While scalar measurements are often sufficient, robust calibration of vector OPMs is increasingly important for applications requiring high accuracy as well as precision. Researchers at JILA, a joint research institute of the University of Colorado Boulder and the National Institute of Standards and Technology, demonstrated a vector OPM that uses Rabi oscillations driven between the manifolds of rubidium atoms to measure the direction of a magnetic field against the polarization ellipse structure of a microwave field. The researchers exposed a cell con...