Skip to main content

Chip-size Amplifier Increases Data Transmission Tenfold





A research team from Chalmers University of Technology has introduced a new amplifier that allows the transmission of ten times more data per second than those in current fiber optic systems. The amplifier, which fits on a small chip, holds potential for various critical laser systems, including those used in medical diagnostics and treatment.

To ensure that information maintains a high quality and is not overwhelmed by noise, optical amplifiers are essential. The data transmission capacity of an optical communication system is largely determined by the amplifier's bandwidth, which refers to the range of light wavelengths it can handle.

“The amplifiers currently used in optical communication systems have a bandwidth of approximately 30 nanometers. Our amplifier, however, boasts a bandwidth of 300 nanometers, enabling it to transmit ten times more data per second than those of existing systems,” said lead author and professor of photonics Peter Andrekson.

The new amplifier, made of silicon nitride, features several small, spiral-shaped, interconnected waveguides that efficiently direct light with minimal loss. By combining this material with an optimized geometric design, several technical advantages have been achieved.

“The key innovation of this amplifier is its ability to increase bandwidth tenfold while reducing noise more effectively than any other type of amplifier. This capability allows it to amplify very weak signals, such as those used in space communication,” said Andrekson.

Additionally, the researchers have successfully miniaturized the system to fit on a chip just a few centimeters in size.

“While building amplifiers on small chips is not a new concept, this is the first instance of achieving such a large bandwidth,” said Andrekson.

The researchers have integrated multiple amplifiers onto the chip, allowing the concept to be easily scaled up as needed. Since optical amplifiers are crucial components in all lasers, the Chalmers researchers’ design can be used to develop laser systems capable of rapidly changing wavelengths over a wide range. According to the researchers, the innovation opens up numerous applications in society.

“Minor adjustments to the design would enable the amplification of visible and infrared light as well. This means the amplifier could be utilized in laser systems for medical diagnostics, analysis, and treatment. A large bandwidth allows for more precise analyses and imaging of tissues and organs, facilitating earlier detection of diseases,” said Andrekson.

In addition to its broad application potential, the amplifier can also help make laser systems smaller and more affordable.

“This amplifier offers a scalable solution for lasers, enabling them to operate at various wavelengths while being more cost-effective, compact, and energy efficient. Consequently, a single laser system based on this amplifier could be utilized across multiple fields. Beyond medical research, diagnostics, and treatment, it could also be applied in imaging, holography, spectroscopy, microscopy, and material and component characterization at entirely different wavelengths,” said Andrekson.

Light at different wavelengths serves various applications. The researchers have demonstrated that the amplifier functions effectively within the optical communication spectrum, ranging from 1400 to 1700 nm. With its extensive bandwidth of 300 nm, the amplifier can potentially be adapted for use at other wavelengths.

By modifying the waveguide design, it is possible to amplify signals in other ranges, such as visible light (400 to 700 nm) and infrared light (2000 to 4000 nm). Consequently, in the long term, the amplifier could be used in fields where visible or IR light is essential, such as disease diagnosis, treatments, visualization of internal organs and tissues, and surgical operations.


Bio Photonics Research Award


Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Glow Up: Synthesizing Cr³⁺-Doped Phosphors!

 Glow Up: Synthesizing Cr³⁺-Doped Phosphors! Introduction : Phosphor technology is lighting the way to incredible applications in areas like biological imaging, food safety detection, and even next-generation energy solutions. One promising development involves Cr³⁺-doped Na-β"-Al₂O₃ phosphors, synthesized using a high-temperature solid-state method. In this post, we'll break down the fascinating science behind these unique materials and their exceptional thermal and luminescent properties. Understanding Cr³⁺-Doped Na-β"-Al₂O₃ Phosphors Synthesis of Na-β"-Al₂O₃ phosphors is a process that infuses Cr³⁺ ions within the material's lattice structure. Here, chromium ions enter the lattice in a trivalent state, taking up space within the Al³⁺ sites of the crystal. This occupancy isn't random; it’s carefully controlled to ensure that Cr³⁺ ions occupy specific positions within the matrix. This precise arrangement is crucial for regulating the material's luminesce...