Skip to main content

Squishy Lasers Could Reveal Secrets of Cell Growth Origins







Researchers at the University of St. Andrews and the University of Cologne have developed lasers that they have described as “squishy.” These devices could help solve the biological mysteries behind the development of embryos and cancerous tumors.

Fundamental biological processes driven by mechanical forces invisible to the naked eye are currently poorly understood by scientists. The squishy lasers developed by the researchers are able to precisely measure the forces exerted by biological cells.

“Embryos and tumors both start with just a few cells,” said professor Malte Gather from the University of St. Andrews. “It is still very challenging to understand how they expand, contract, squeeze, and fold as they develop. Being able to measure biological forces in real-time could be transformative. It could hold the key to understanding the exact mechanics behind how embryos develop, whether successfully or unsuccessfully, and how cancer grows.”

These squishy microlasers can be injected directly into embryos or mixed into artificial tumors. According to Marcel Schubert, a professor at the University of Cologne, the microlasers are actually droplets of oil doped with fluorescent dye.

“As the biological forces get to work, the microlasers are squished and deformed by the cells around them. The laser light changes its color in response and reveals the force that’s acting upon it,” Schubert said.

The innovation allows researchers to measure and monitor biological forces in real time, Schubert said. Additionally, he said, it works in thick biological tissue, an area where other methods would require an almost transparent sample.

The oil and fluorescent dye used to create the microlasers are made from nontoxic, readily available materials, ensuring they do not interfere with biological processes. This aspect makes the technology not only effective but also commercially viable.

The researchers tested their method on fruit fly larvae, to see how they developed, as well as in artificial tumors made from brain tumor cells, so-called tumor spheroids.

“We measured the 3D distribution of forces within tumor spheroids and made high-resolution long-term force measurements within the fruit fly larvae,” Gather said.

The team is now seeking funding to adapt their method for clinical trials, aiming to extend its application to larger cell systems.

Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Laser Method Enables Fast & Precise Blood Vessels in Hydrogel

Researchers from Vienna University of Technology (TU Wien) and Keio University have found a way to create artificial blood vessels in miniature organ models in a quick and reproducible manner. The method utilizes ultrashort laser pulses in the femtosecond range to write highly 3D structures into a hydrogel. In biomedical research, organs-on-a-chip are becoming increasingly important: By cultivating tissue structures in precisely controlled microfluidic chips, it is possible to conduct research much more accurately than in experiments involving living humans or animals. However, there has been a major obstacle: such mini-organs are incomplete without blood vessels. To facilitate systematic studies and ensure meaningful comparisons with living organisms, a network of perfusable blood vessels and capillaries must be created — in a way that is precisely controllable and reproducible. “We can create channels spaced only a hundred micrometers apart. That’s essential when you would like to...