Skip to main content

Hybrid Material Achieves Fast, Stable Phosphorescent Emission for OLEDs





A hybrid material made from organic chromophores and transition metal dichalcogenides (TMDs) can produce stable, fast, phosphorescent light emission for OLED displays. The new hybrid, developed by a team co-led by the University of Michigan (U-M), could replace the heavy metal components currently used to improve efficiency, brightness, and color range in OLED devices.

Organic materials with room-temperature phosphorescence are an appealing alternative to heavy metals because of their tunable luminescent properties, large design window, environmentally-friendly components, and economical production cost.

Phosphorescence is 3 times more energy-efficient than fluorescence, but happens more slowly. To keep pace with modern displays, which operate at 120 frames per second, phosphorescence must occur in microseconds. The metals used in OLEDs, like iridium and platinum, enable phosphorescence to take place in microseconds instead of milliseconds. The large atomic nucleus of the heavy metal generates a magnetic field that causes the excited electrons to emit light faster as they go from the excited to the ground state.

The researchers developed an alternative strategy for developing emitters for phosphorescence by creating heterostructures of organic chromophores and TMDs.

The heterostructures were made of diethyl 2,5-dihydroxy terephthalate (DDT), an organic fluorophore, using various TMDs. A 2D layer of molybdenum (MoS2) and sulfur is positioned near a similarly thin layer of the organic light-emitting material, achieving physical proximity without any chemical bonding. Light emission occurs entirely within the organic material, without the need for weak, metal-organic ligand bonding.

The team observed the TMD-induced photophysical variations in the DDT and found that the DDT on the TMDs emitted microsecond phosphorescence at room temperature. It further found that spin-orbit couplings of the DDT were enhanced by the through-space, spin-orbit proximity effect of the TMDs in the heterostructures.

The hybrid construction increased light emission by 1000 times, achieving speeds fast enough for modern displays. “We found a way to make a phosphorescent organic molecule that can emit light on the microsecond scale, without including heavy metals in the molecular framework,” professor Jinsang Kim said.

Phosphorescent OLEDs that rely on heavy metals also use the metals to help produce color. The weak chemical bonds between the metal and the organic material can break apart when two excited electrons come into contact, dimming the pixel.

Pixel burnout in high-energy blue light has yet to be resolved, but the researchers hope their new design approach will contribute to stable, blue phosphorescent pixels. Currently, OLEDs use phosphorescent red and green pixels and fluorescent blue pixels, avoiding blue pixel burnout at the expense of lowering energy efficiency.

When the researchers analyzed the molecular hybrid system, they made an unusual discovery — the system appeared to break a rule of quantum mechanics.

Paired electrons sharing an orbital seemed to have a combined spin under dark conditions, suggesting a “forbidden” triplet state, when instead their spins should have cancelled one another out. According to a principle of quantum mechanics, the Pauli Exclusion Principle, an electron and its partner in the ground state must spin in opposite directions.

“We don’t yet fully understand what causes this triplet character in the ground state because this violates the Pauli Exclusion Principle,” Kim said. “That’s why we have a lot of questions about what really makes that happen.”

The researchers plan to explore how the hybrid material achieves triplet character ground states, while also pursuing potential spintronics device applications. The team has applied for patent protection with the assistance of U-M Innovation Partnerships and is seeking partners to create devices using the hybrid material.

In addition to the team from U-M, researchers from Inha University; Sungkyunkwan University; the University of California, Berkeley; and Dongguk University contributed to the study.


Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Laser Method Enables Fast & Precise Blood Vessels in Hydrogel

Researchers from Vienna University of Technology (TU Wien) and Keio University have found a way to create artificial blood vessels in miniature organ models in a quick and reproducible manner. The method utilizes ultrashort laser pulses in the femtosecond range to write highly 3D structures into a hydrogel. In biomedical research, organs-on-a-chip are becoming increasingly important: By cultivating tissue structures in precisely controlled microfluidic chips, it is possible to conduct research much more accurately than in experiments involving living humans or animals. However, there has been a major obstacle: such mini-organs are incomplete without blood vessels. To facilitate systematic studies and ensure meaningful comparisons with living organisms, a network of perfusable blood vessels and capillaries must be created — in a way that is precisely controllable and reproducible. “We can create channels spaced only a hundred micrometers apart. That’s essential when you would like to...