Skip to main content

Breath-Activated Sensor for Diagnosing Diabetes






Currently, diagnosing diabetes and prediabetes means a visit to a doctor's office or lab work, both of which can be expensive and time-consuming. Research from Huanyu "Larry" Cheng at Penn State has yielded a sensor that can help diagnose diabetes and prediabetes on-site in a few minutes with just a breath sample.

Previous diagnostic methods have used glucose found in blood or sweat, but the current sensor however, this non-invasive test uses a sensor to detect acetone levels in breath. While acetone in breath is a normal byproduct from the burning of fat, an acetone level of 1.8 parts per million is a sign of diabetes.

“While we have sensors that can detect glucose in sweat, these require that we induce sweat through exercise, chemicals or a sauna, which are not always practical or convenient,” Cheng said. “This sensor only requires that you exhale into a bag, dip the sensor in, and wait a few minutes for results.”

While there have been other breath detection methods in the past, they have required lab analysis. Acetone can be detected and read on-site, making the new sensors cost-effective and convenient.

Beyond using acetone as the biomarker, Cheng said another novelty of the sensor came down to design and materials — primarily laser-induced graphene. To create this material, a CO2 laser is used to burn the carbon-containing materials, such as the polyimide film in this work, to create patterned porous graphene with large defects desirable for sensing.

The porous nature of the graphene helps to let the gas pass through, which means there is a higher likelihood of the acetone molecules being captured. By itself, laser graphene didn’t identify acetone as precisely as needed, which the team remedied by combining the graphene with zinc oxide.

“A junction formed between these two materials that allowed for greater selective detection of acetone as opposed to other molecules,” Cheng said.

Cheng said another challenge was that the sensor surface could also absorb water molecules, and because breath is humid, the water molecules could compete with the target acetone molecule. To address this, the researchers introduced a selective membrane, or moisture barrier layer, that could block water but allow the acetone to permeate the layer.

Currently, the method requires that a person breathe directly into a bag to avoid interference from factors such as airflow in the ambient environment. The next step is to improve the sensor so that it can be used directly under the nose or attached to the inside of a mask, since the gas can be detected in the condensation of the exhaled breath. He said he also plans to investigate how an acetone-detecting breath sensor could be used to optimize health initiatives for individuals.

“If we could better understand how acetone levels in the breath change with diet and exercise, in the same way we see fluctuations in glucose levels depending on when and what a person eats, it would be a very exciting opportunity to use this for health applications beyond diagnosing diabetes,” Cheng said.

Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Laser Method Enables Fast & Precise Blood Vessels in Hydrogel

Researchers from Vienna University of Technology (TU Wien) and Keio University have found a way to create artificial blood vessels in miniature organ models in a quick and reproducible manner. The method utilizes ultrashort laser pulses in the femtosecond range to write highly 3D structures into a hydrogel. In biomedical research, organs-on-a-chip are becoming increasingly important: By cultivating tissue structures in precisely controlled microfluidic chips, it is possible to conduct research much more accurately than in experiments involving living humans or animals. However, there has been a major obstacle: such mini-organs are incomplete without blood vessels. To facilitate systematic studies and ensure meaningful comparisons with living organisms, a network of perfusable blood vessels and capillaries must be created — in a way that is precisely controllable and reproducible. “We can create channels spaced only a hundred micrometers apart. That’s essential when you would like to...