Skip to main content

Disinfection Solution Provider Uviquity Emerges from Stealth with $6.6M











RALEIGH, N.C., — Uviquity, a deep tech startup developing next-generation photonic disinfection technologies, has emerged from stealth with $6.6 million in seed funding. The funding will support the company's R&D efforts, accelerating the productization of its core technology. The company is developing solid-state far-UV-C (200-230-nm) semiconductor light sources designed to deliver safe, continuous, and chemical-free disinfection for air, food, and water applications.

Unlike conventional UV-C solutions, far-UVC light has been proven safe for continuous exposure to human skin and eyes while rapidly inactivating all known pathogens, including viruses, bacteria, fungi, and mold spores. Until now, far-UV-C systems have relied on bulky gas-discharge lamps with limited scalability and reliability, according to the company.

Uviquity's proprietary photonic integrated circuit couples blue laser light into frequency-doubling waveguides, enabling a compact, energy-efficient, and durable solution that can be integrated into light fixtures, air handling systems, food packaging and processing equipment, agricultural crop protection systems, water purification systems, and consumer appliances.

The round was led by Emerald Development Managers with participation from AgFunder and MANN+HUMMEL.

Bio Photonics Research Award

Visit: biophotonicsresearch.com
Nominate Now: https://biophotonicsresearch.com/award-nomination/?ecategory=Awards&rcategory=Awardee

#MeatAnalysis #FluorescenceTech #FoodQuality #FoodSafety #SpectroscopyInFood #MeatAuthentication #RapidDetection #FoodScience #MeatFreshness #MolecularDetection #FoodIndustryInnovation #NonDestructiveTesting #FoodMonitoring #SpectroscopyApplications #QualityControl #AdvancedSpectroscopy #MeatSpoilageDetection #FoodIntegrity #SmartFoodTesting #RealTimeAnalysis #FoodAuthenticity #FoodSafetyInnovation #SpectroscopyResearch #NextGenFoodSafety #InnovativeFoodScience,

Comments

Popular posts from this blog

Abrisa Technologies Acquires Agama Glass Technologies

SANTA PAULA, Calif. — Abrisa Technologies, a provider of custom glass optics and thin film coatings and a subsidiary of HEF Photonics, has acquired Agama Glass Technologies, a manufacturer of etched anti-glare glass and technical glass processing. The acquisition, Abrisa said, expands its manufacturing footprint and adds a vertically integrated solution for chemically etched anti-glare display glass. According to Abrisa, Clarksburg, West Virginia-based Agama operates North America’s only high-volume technical glass etching facility. Agama's flagship product, AgamaEtch, is used in high-performance display and optics applications. The company's 85,000 sq ft facility also offers precision glass fabrication, chemical strengthening, and silk-screen printing, serving markets such as avionics, defense, medical, industrial, and touchscreen displays. Combined with Abrisa Technologies’ and HEF Photonics’ thin-film coating and surface engineering capabilities, Agama's offerings wi...

How Biophotonics Is Harnessing Light for Health And Science

Fifty or so years ago French physicist Pierre Aigrain coined the term photonics as a research field whose goal was to use light to perform functions that traditionally fell within the typical domain of electronics, such as telecommunications, and information processing. Or maybe it was John Campbell who, in a letter sent to Gotthard Gunther in 1954, wrote, “Incidentally, I’ve decided to invent a new science — photonics. It bears the same relationship to Optics that electronics does to electrical engineering. Photonics, like electronics, will deal with the individual units; optics and EE deal with the group phenomena! And note that you can do things with electronics that are impossible in electrical engineering!” Naming rights aside, the field of photonics began in earnest between 1958 and 1960 with the invention of the maser and the laser. The laser diode followed during the 1970s, optical fibers and the erbium-doped fiber amplifier after that, and, pretty soon, the telecommunications...

Accurate Magnetic Field Measurement Method Could Advance Quantum Sensing

  Optically pumped magnetometers (OPMs) are used to measure magnetic fields in biosensing, contraband testing, and magnetic communications. They also aid in dark matter searches and serve as promising platforms for quantum -enhanced measurements. Accurate vector magnetometry, however, remains a challenge for OPMs due to the OPM’s inherent scalar operation. Scalar OPMs require an external reference to extract directional information. While scalar measurements are often sufficient, robust calibration of vector OPMs is increasingly important for applications requiring high accuracy as well as precision. Researchers at JILA, a joint research institute of the University of Colorado Boulder and the National Institute of Standards and Technology, demonstrated a vector OPM that uses Rabi oscillations driven between the manifolds of rubidium atoms to measure the direction of a magnetic field against the polarization ellipse structure of a microwave field. The researchers exposed a cell con...